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The Model Applications

Understanding the internal structure of an exoplanet is a crucial step in With both the minimum and maximum CRFs acting as a bounding box, a
determining its habitability. Unfortunately, mass and radius alone cannot reveal marginal CRF can also be inferred by sampling in between. As an example

now much iron, silicon or water a solid planet is made of, let alone its core radius application, we implement hardCORE on the rocky planet Kepler-36b. Using its
fraction (CRF). Our model exploits two boundary conditions in order to solve for real mass-radius joint posterior distribution consisting of 104 samples, our model
pboth the minimum core radius fraction (CRF) and the maximum core radius vields a CRFmin and CRFmax posterior from which we can draw random samples to
fraction (CRF). We note that this model assumes that the planet is fully create @ CRFmarg posterior. Our CRFmarg for Kepler-36b = 0.64+0.10. For
differentiated, that the core is not made of any element denser than iron (e.g. no comparison, the CRFmarg for a synthetic Earth yields 0.60. This in general agrees
uranium cores), and that if there is an outer envelope, it has negligible mass. with previous conclusions of Kepler-36b: the planet appears to be compatible

with having an Earth-like interior.
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Method Results

In order to calculate CRFmin, we parametrically interpolate the theoretical two- A basic and important question to ask is what kind of precisions on a planet’s
ayer iron-silicate estimates of mass and radius from Zeng & Sasselov (2013). Our mass and radius lead to meaningful constraints on CRFmin, CRFmarg, and CRFmax?
model, which we dub hardCORE, can be easily inverted to provide a unique In other words, what is the correspondence we might expect between

solution for CRFmin. By retraining and cross-validating our model, we find that the {((AM/M), (AR/R)} and (ACRF/CRF)? We investigate what kind of precisions on a
mean error of our model is 0.045% and the maximum error is 0.24%. planet’s mass and radius lead to meaningful constraints on CRFmnarg? We conduct a
Determining CRFmax is far more straight-forward. We simply take the 100% iron sensitivity analysis for our model and find that the radius is the dominant
mass-radius models, and directly compute the expected radius of a pure iron constraint for the CRF. CRFmarg appears to saturate to ~10%. This implies that no

planet given an observed mass, better than 10% precision can ever be obtained on the CRF using just mass and

core radius fraction Riron(Mobs). The maximum core radius alone, providing a clear goal post for observers interested in compositions.
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Fig. 2. Interpolated theoretical mass-radius Fig. 3 We are then motivated to —— - —— ——

relations for a silicate-iron two-layer solid planet describe the dependence of the
for various core radius fractions (CRFs), based off polynomials with respect to the CRF, by
Zeng & Sasselov (2013). All interpolations for making the coefficients polynomial

CRFs between 0 and 1 are seventh-order functions themselves to create a
polynomials. parametrized interpolation.

Fig. 5. Contour plots of sensitivity analysis of CRFmin, CRFmarg and CRFmax. For example, ito
obtain a precision of 10% on CRFmin, we require a measurement on the mass better than 11%
and a measurement on the radius better than 3%.
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